Bài 3: Hàm số liên tục

Bài 3: Hàm số liên tục

HÀM SỐ LIÊN TỤC

A.    KIẾN THỨC CẦN NHỚ

1.      Hàm số liên tục tại một điểm trên một khoảng:

o   Cho hàm số f(x) xác định trên khoảng (a;b). Hàm số được gọi là liên tục tại điểm x0 \( \in \) (a;b) nếu:\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right)} \right] = f\left( {{x_0}} \right)\).Điểm x0 tại đó f(x) không liên tục gọi là điểm gián đoạn của hàm số.

o   f(x) xác định trên khoảng (a;b)

            liên tục tại điểm x0 \( \in \) (a;b) \( \Leftrightarrow \mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right)} \right] = f\left( {{x_0}} \right)\).

o   f(x) xác định trên khoảng (a;b) được gọi là liên tục trên khoảng (a;b) nếu nó liên tục tại mọi điểm thuộc khoảng ấy.

o   f(x) xác định trên khoảng [a;b] được gọi là liên tục trên khoảng [a;b] nếu nó liên tục trên khoảng (a;b) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {a^ + }} \left[ {f\left( x \right)} \right] = f\left( a \right)\\\mathop {\lim }\limits_{x \to {b^ - }} \left[ {f\left( x \right)} \right] = f\left( b \right)\end{array} \right.\)

2.      Một số định lý về hàm số liên tục:

o   Định lý 1: f(x) và g(x) liên tục tại x0 thì:\(f\left( x \right) \pm g\left( x \right){\rm{ , }}f\left( x \right).g\left( x \right){\rm{ , }}\frac{{f\left( x \right)}}{{g\left( x \right)}}{\rm{  }}\left( {g\left( x \right) \ne 0} \right)\) cũng liên tục tại x0 .

o   Đinh lý 2: Các hàm đa thức, hàm hữu tỷ, hàm lượng giác liên tục trên tập xác định của chúng.

o   Định lý 3: f(x) liên tục trên đoạn [a;b] thì nó đạt GTLN, GTNN và mọi giá trị trung giữa GTLN và GTNN trên đoạn đó.

·        Hệ quả: Nếu f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì tồn tại ít nhất một điểm c\( \in \)(a;b) sao cho f(c) = 0 . Tức là có ít nhất một nghiệm thuộc khoảng (a;b).

B.    PHƯƠNG PHÁP GIẢI TOÁN.

1.      Xét tính liên tục của hàm số dạng: \(f\left( x \right) = \left\{ \begin{array}{l}g\left( x \right){\rm{                }}\left( {{\rm{x}} \ne {{\rm{x}}_{\rm{0}}}} \right)\\{\rm{a                       }}\left( {{\rm{x = }}{{\rm{x}}_{\rm{0}}}} \right)\end{array} \right.{\rm{               }}\)

o    Tìm \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {g\left( x \right)} \right]\).Hàm số liên tục tại x0 .

2.      Xét tính liên tục của hàm số dạng: \( \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} \left[ {g\left( x \right)} \right] = a\)\(f\left( x \right) = \left\{ \begin{array}{l}g\left( x \right){\rm{          }}\left( {{\rm{x < }}{{\rm{x}}_{\rm{0}}}} \right)\\a{\rm{                }}\left( {{\rm{x = }}{{\rm{x}}_{\rm{0}}}} \right)\\h\left( x \right){\rm{          }}\left( {{\rm{x > }}{{\rm{x}}_{\rm{0}}}} \right)\end{array} \right.\)

o   Tìm : \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to x_0^ - } \left[ {g\left( x \right)} \right]\\\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to x_0^ + } \left[ {g\left( x \right)} \right]\\f\left( {{x_0}} \right)\end{array} \right.\). Hàm số liên tục tại x = x0 \( \Leftrightarrow \mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right)} \right] = f\left( {{x_0}} \right) = a\).

3.      Chứng minh phương trình f(x) = 0 có nghiệm trong khoảng (a;b).

o   Chứng tỏ f(x) liên tục trên đoạn [a;b].

o   Chứng tỏ f(a).f(b)<0

Khi đó f(x) = 0 có ít nhất một nghiệm thuộc (a;b).

Nếu chưa có (a;b) thì ta cần tính các giá trị f(x) để tìm a và b. Muốn chứng minh f(x)=0 có hai , ba nghiệm thì ta tìm hai , ba khoảng rời nhau và trên mỗi khoảng f(x)=0 đều có nghiệm.

C.    CÁC VÍ DỤ.

1.      Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}{\rm{             }}\left( {{\rm{x}} \ne {\rm{1}}} \right)\\{\rm{a                      }}\left( {{\rm{x = 1}}} \right)\end{array} \right.\) a là hằng số. Xét tính liên tục của hàm số tại x0 = 1.

Giải

            Hàm số xác định với mọi x thuộc R.

            Ta có f(1) = a.

            \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = 2\)

            Nếu a=2 thì hàm số liên tục tại x0 = 1.

            Nếu a khác 2 thì hàm số gián đoạn tại x0 = 1.

2.      Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 1{\rm{      }}\left( {{\rm{x}} > {\rm{0}}} \right)\\{\rm{x             }}\left( {{\rm{x}} \le {\rm{0}}} \right)\end{array} \right.\). Xét tính liên tục của hàm số tại x0 =0.

Giải

            Hàm số xác định với mọi x thuộc R.

            Ta có f(0) = 0

            \(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ - }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {0^ - }} x = 0\\\mathop {\lim }\limits_{x \to {0^ + }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + 1} \right) = 1{\rm{ }} \ne {\rm{ 0 = }}\mathop {\lim }\limits_{x \to {0^ - }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {0^ - }} x\end{array}\).

            Vậy  hàm số không liên tục tại x0 = 0.

3.      Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}ax + 2{\rm{             }}\left( {{\rm{x}} \ge {\rm{1}}} \right)\\{{\rm{x}}^{\rm{2}}}{\rm{ + x - 1            }}\left( {{\rm{x}} < {\rm{1}}} \right)\end{array} \right.\)           . Xét tính liên tục của hàm số trên toàn trục số.

Giải

            x >1 ta có f(x) = ax +2 hàm số liên tục.

            x <1 ta có f(x) =  x2+x-1 hàm số liên tục.

            Khi x = 1:

            Ta có f(1) = a+2

            \(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {1^ + }} \left( {ax + 2} \right) = a + 2\\\mathop {\lim }\limits_{x \to {1^ - }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + x - 1} \right) = 1\end{array}\).

                        Hàm số liên tục tại x0 = 1 nếu a = -1.

                        Hàm số gián đoạn  tại x0 = 1 nếu a \( \ne \) -1.

            Vậy  hàm số liên tục trên toàn trục số nếu a = -1.Hàm số liên tục trên \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\) nếu  a \( \ne \) -1.